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Section 1
INTRODUCTION

The objective of this work is to investigate the
effects of the Gulf Stream frontal system on acoustic
propagation relative to tactical sonar systems. To accomp-
lish this, two Gulf Stream data sets were considered. The
first data set, provided by the U.S. Naval Oceanographic
Office, was used in a comparative model study. The second,
provided by the Naval Underwater Systems Center (NUSC), was
used to characterize the environmental acoustic parameters
of the Gulf Stream frontal system in the detail needed for
systems utilizing ranges of second convergence zone or less.
Transmission loss estimates have been obtained from range
dependent acoustic propagation models for source and receiv-
er geometries of tactical importance relative to features
associated with this frontal system.

The characterization of acoustic propagation
through a front involves several problems at frequencies of
tactical systems (.1 - 20 kHz). These include convergence
zone structure, leakage from surface ducts and reinsonifi-
cation of surface ducts near convergence zones. Convergence
zone structure can be determined from a ray model. Leakage
from a range dependent surface duct and reinsonification of
a surface duct near a convergence zone can best be handled
by a wave model, although for the frequencles of interest a
wave model is limited. Two ray models (MPP and GRASS) and
one wave model (PE) were used in this analysis. The primary
disadvantage of ray models is their inadequacy for handling




diffraction and leakage. The primary disadvantage of PE
is the practical limitation on the combination of frequency
and depth which can be handled. At the high frequency end,
the propagation of interest is via direct and surface ducted
paths. The diffracted field at these frequencies does not
have an important effect, so a ray model should adequately
handle the direct paths. A ray model may be limited in its
handling of ducted paths. These limitations are discussed
in the model evaluation.

The study of acoustic propagation through the
Gulf Stream leads to questions concerning the position and
temperature of the stream, as well as the variations of
these characteristics with time. A brief discussion of the
oceanographic characteristics of the Gulf Stream is found in
the next section. Subsequent sections contain the technical
approach, the model evaluation, and the acoustic impli-~
cations of this model study.




Section 2
GULF STREAM ENVIRONMENT

In the region of the Gulf Stream, temperature
variations are large when compared to salinity variations.
This is due largely to the annual heating and cooling of the
slope and the shelf waters. Since temperature variations
are of greater importance with respect to acoustic propa-
gation, the literature was reviewed for those studies
dealing with long-term vertical temperature sampling across
the Gulf Stream.

In October 1969 a program was initiated by the
Naval Oceanographic Office to monitor the thermal structure
of the water column between New York and Bermuda. The basic
results of the study were: 1) the seasonal heating and
cooling extended only to the upper 200 m of the ocean, and
2) the north wall position (defined as the maximum hori-
zontal temperature gradient at 200 m) can be estimated from
the maximum surface temperature. The minimum temperatures
occurred in March/April while the maximum temperatures
occured in August/September at the surface and September/
October in the near-surface waters. The typical surface
temperature change across the transits was 39 - 49C in
summer and as much as 15°C in winter. Shelf and Sargasso
Sea surface temperatures were approximately 24°C and
270C for the summer, and 69C and 18°C for the winter.
In terms of sound velocities (using a coanstant salinity of
35 ©/00), the typical surface velocity change across
the transits was 8 m/sec in summer and 30 m/sec in winter.




Considering the data further, an annual pattern
emerges which is depicted in Figure 1. During the coldest
part of the year (Figure 1A), the 150 -~ 190C isotherms
of the north wall intersect the surface almost directly
above the north wall, with the 199 isotherm leveling off
at a depth of 300 m. During April/May, the 139C isotherm
begins to make its way shoreward, and the Sargasso Sea water
becomes warmer. By the time of maximum surface temperatures
(Figure 1B), the 159 - 250C isotherms have formed a sea-
sonal pycnocline north of the Gulf Stream, and the Gulf
Stream itself has warmed to 27°C. The pycnocline begins
to deteriorate by mid-fall (Figure 1C), with the cooling of
the Gulf Stream waters and the seaward movement of the 17°
- 199C isotherms. By early winter, the 17° and 19°C iso-
therms are back in positions similar to that of the coldest
part of the year and the 159C isotherm has begun working
its way seaward.

The variation of this annual pattern is dependent
on the variations of the heating and cooling periods of the
year. For example, the depth of the 19°C isotherm in the
Sargasso Sea will be a function of the amount of 180°C
Sargasso Sea water formed during the winter. This water,
with an average temperature of 17.99C and salinity of 36.5
9/00, appears south of the Gulf Stream in late winter.
This layer exhibits remarkable stability; temperature
variations of 0.3°C and salinity variations of 0.1 %/oo0
are observed. This water has been called the 189 water by
Worthington (1959) and Istoshin (1961). The northern ari
western limit of the 189C water is the Gulf Stream which
transports surface water of 20°C or warmer at all seasons.

2-2
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The southern limit is around 339N, where the surface mini-
mum air temperature never drops below 19°C. The eastern
limit is approximately in the vicinity of the Mid-Atlantic
ridge, although it has been noted that the thickness of the
layer decreases toward the east (Worthington, 1959). The
formation of this 189C water mass is thought to be due to
outbreaks of cold, dry continental polar air that flow over
the Sargasso Sea in late winter. This water mass is formed
in superabundance in the Northwestern Sargasso Sea and flows
southward along the density surface of o0 = 26.4 while
warm water is advected northward on the surface to replace
it (Worthington, 1972). Surface warming in late spring and
summer causes the formation of a seasonal thermocline, with
this isothermal layer sandwiched between the seasonal and
permanent thermocline.

Another factor which may influence the north wall
characteristics is the entrainment of shelf water along the
north edge of the Gulf Stream near Cape Hatteras (Kupperman
and Garfield, 1977). This entrainment can occur above and
below the shelf thermocline and results in surface and
subsurface bands of fresher water found along the shoreward
edge of the Gulf Stream off the northeastern United States.
During periods when the shelf water is warmer than the off-
shore slope water, the subsurface low salinity band also
appears as a temperature inversion along the north wall
(Kupperman and Garfield, 1977). An intrusion of 1low
salinity water that 1is cooler than the slope water can
result in an increased horizontal temperature gradient
at the north wall (Cheney, 1978). The horizontal scale of




these low salinity bands varies from 2 - 5 km while being
60 - 75 m thick (Kupperman and Garfield, 1977: Cheney,
1978), but 1little is known as to variations of these dimen-
sions. Lower salinity of the shelf water tends to maintain
the layer's vertical stability and allows it to be advected
hundreds of kilometers downstream before being mixed with
surrounding water (Cheney, 1978).

The acoustic environmment of the Gulf Stream region
can be evaluated by examining the sound velocity structure
for the different water masses. Figure 2a shows typical
late spring conditions in the slope water. The deep sound

channel axis occurs at 500 m. The upper portion of this
profile changes seasonally. Deep mixing due to winter r
storms results in an isothermal layer forming a surface
duct. The sound velocity structure of the North Wall

(Figure 2b) is primarily downward refracting. The entrained
shelf water along the North Wall results in a sharp near
surface sound velocity minimum. The warm core (Figure 2c¢c)
is also characterized by a sharply downward refracting
region. The deep sound channel axis is deeper than the
slope water. The Sargasso Sea water, like the Slope Water,
is characterized by deep mixed layers in the winter and
surface warming in the summer. The profile in Figure 2d
shows the effects of surface warming and the remains of the
surface duct formed by the 18°9C water. The deep sound
channel axis is at 1200 m and the channel is much wider
- characteristic of warmer water.

The effect of this environment on tactical
systems depends on specific source receiver geometries. In

the warm core, much of the acoustic energy is refracted

2-5
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downward, into the bottom. For a receiver in the warmer
Sargasso water, a signal enhancement at low frequencies can
be expected for a source moving across the Gulf Stream.
This results from the narrowing and rising of the deep sound
channel. Detailed discussions of these effects are found in
Section 5.
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Section 3
TECHNICAL APPROACH

To investigate the effects of the Gulf Stream
frontal system on acoustic propagation relative to tactical
sonar systems a model study was performed. Transmission
loss estimates from the Parabolic Equation Model (a wave
model) and two ray models, GRASS (Germinating Ray Acoustics
Stimulation System) and MPP (Multiple Profile Program) were
compared to measured low-frequency transmission loss in the
Gulf Stream. A subset of these models was used for high
frequency transmission loss estimates. A discussion of the
features of each model and its applicability to the analysis
of the experimental data follows.

C-Field

The C-Field model permits the establishment of a
continuous sound velocity field for a particular environ-
ment. Given the sound speed profiles along the track,
C-Field uses a system of triangular interpolation and sound
speed gradient matching to create a continuous sound speed
field between any two sound velocity profiles. In this
manner, sound velocity as a function of depth and range is
formulated for the length of the track.

Parabolic Equation
The Parabolic Equation (PE) Model, developed

by Tappert and Hardin (Tappert and Hardin, 1973; Tappert,
1974; Brock, 1978), provides an approximate solution to the

3-1




elliptical wave equation. Its primary advantage is the
ability to treat range-dependent environments; secondary
advantages include accuracy of solutions and ease of use.
The model utilizes an environment specified by the following
parameters:

® sound speed profiles

e bathymetry

e receiver depths

® source depth

e source frequency

e maximum range of interest

The PE model yields transmission loss estimates
as a function of range as well as the distribution of energy
as a function of depth and range along the track. These
capabilities and its inherent flexibility of usage make the
PE model an invaluahble tool in analytic and predictive
acoustical research.

The parabolic approximation method has been a
powerful contribution to predictive numerical propagation
models. The model is limited in its ability to treat
severely varying bathymetric conditions. The measured
transmission loss data considered in this study was taken by
a receiver mounted on a slope which tends to reflect




incident energy. For the purposes of this study, only the
waterborne energy was cousidered. That is, the PE calcula-
tion was made with an absorbing bottom, and any energy
incident on the bottom was eliminated. The ray models were
also restricted to include only energy from totally water-
borne paths. In this way, the levels of predicted transmis-
sion loss can be compared and the complications in handling
a slope site are avoided.

Multiple Profile Program

The Multiple Profile Program (MPP) (Spofford,
1973) uses the same range dependent environment as used by
the PE model. MPP allows a visualization of sound propa-
gation using ray tracing techniques. MPP determines ray

trajectories and intensities which delineate the acoustic
field of interest. For transmission loss calculations, the
model uses a multipass system which first computes ray
parameters, then makes an additional pass through the data
to generate a smoothed range derivative function and carry
out additional caustic corrections. Transmission loss
estimates obtained in this study are for waterborne energy
only. To accomplish this, only the angular aperture cor-
responding to waterborne energy is used in the calculation.

Germinating Ray Acoustic Simulation System
The Germinating Ray Acoustic Simulation System
(GRASS) (Cornyn , J. J., 1973) utilizes a ray tracing tecn-

nique involving iteration along the ray path. This ray
tracing technique is applicable to a variable environment

3-3




with changing bottom depth, velocity profile, and sea
surface conditions. The propagation loss values represent
the expected value for propagation in the ocean in the
context of making a series of measurements for approximately
similar oceanographic conditions.

The version of GRASS used in this study is resi-
dent at the Naval Underwater Systems Center (NUSC), New
London. This model uses the same range dependent track as PE
and MPP but does not use the C-Field format. The model was
run with a very high bottom loss so that any energyv incident
on the bottom was eliminated. This allowed only the water-
borne energy to be used in the calculation.

At 1low frequencies, the PE model should provide
the best approximation since the diffracted field is impor-
tant. Verification of ray model results can be made by
comparing the predicted transmission loss estimates with PE
for these frequencies. The overall 1levels should agree,
although the PE model should show more structure. For
frequencies of tactical sonar systems, the diffracted field
is less {important and ray theory, which is not frecuency
limited, should provide a good approximation.




Section 4
ACOUSTIC MODEL COMPARISON

Environmental Description

During May 1978, the U.S. Naval Oceanographic
Office conducted an exercise in which simultaneous environ-
mental and propagation loss measurements were made along a
track extending from Slope Water, through the Gulf Stream,
and into the Sargasso Sea. The concurrent oceanographic and
acoustic data collected during these exercises provide an
excellent data set for the model evaluation to be performed
in this study. Figure 3 shows the track from this experi-
ment (I) in close proximity to the track of interest for the
tactical system study. The measured transmission loss was
for long range and low frequency. Under these conditions,
the PE model should provide the best approximation. Trans-
mission loss estimates from the ray models should approxi-
mate the measured transmission loss levels but should not
include detailed propagation structure. As the frequency
increases, the agreement between the transmission 1loss
estimates from the ray model and wave model should increase
since the diffracted field at these frequencies is less
important and the ray solution should approach the wave
solution.

Environmental station data were collected by
the USNS BARTLETT with salinity/temperature/depth (STD)
system cacts to 3000 m. The USNS LYNCH followed the same
track at an average speed of 14.8 km per hour while towing
an omnidirectional 88.8 Hz CW projector 30 m deep. Expen-
dable bathythermograph (XBT) measurements, from the

4-1
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surface to 760 m depth, were made every 1.5 km in the Gulf
Stream. These densely spaced XBT's were used along with the
STD's to determine the environment along the track. Trans-
mission loss data were measured through a bottom - mounted,
omnidirectional hydrophone situated near the Deep Sound
Channel (DSC) axis off Bermuda. A more detailed description
of this experiment and subsequent data analysis can be found
in Gold et al. (1979). Both the measured transmission loss
and the environmental data from this study were provided by
the U.S. Naval Ocean-

ographic Office.

Figure 4 (Gold, 1979) presents a cross section
of temperature from the BARTLETT track. The Gulf Stream,
indicated by the steeply sloping isotherms, extends to a
depth of 3000 m. The warm core of the Gulf Stream, defined
as that water with a temperature greater than 259C is
apparent in this figure. The entrained shelf water runs
along the northern edge of the Gulf Stream between depths of
50 and 350 m.

Variations in temperature and salinity gradients
occuring over small spatial scales have been shown to affect
long range acoustic propagation (D'Amico and Blumen, 1979;
Khedouri and Cheney, 1978; Fenner 1978; Gemill and Kheduri,
1974). A linear track was constructed to determine the
effects of the Gulf Stream on sound transmission. The
acoustic and bathymetric environment along the track is
shown in Figure 5. Sound velocity profiles in the Sargasso
Sea show a wide DSC with its axis at about 1200 m. Proceed-
ing to the northwest, the deep sound channel narrows and the
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axis rises to a depth of about 500 m. The narrowing of the
deep sound channel serves to focus the propagating acoustic
rays in this region. The Gulf Stream is seen as a strongly
downward refracting region. The bathymetry along the track
becomes progressively shallower over the continental slope.
The downward refracting region of the Gulf Stream causes
energy to interact with the bottom. This study is concerned
with only waterborne energy and these bottom interacting
paths are not considered.

Acoustic Ray Paths

Acoustic ray paths have been traced outward from
the receiver for the entire length of the track. These ray
paths have been broken up into families that experience
similar bottom and surface interactions. Only positive
angles are coansidered since the receiver is bottom mounted.
For illustrative purposes, the bottom is considered to be
wholly refracting for the first 20 nm of the track. This
enables all the rays to get off the slope directly in front
of the receiver and propagate out in range. The bottom is
totally absorbing for the remainder of the track, so that
any rays incident on the bottom are eliminated from the
problem.

Figure 6 shows the acoustic propagation paths for
an angular aperture of 00 - 39. These paths experience
minimal interaction with the slope and become totally
waterborne refracted-refracted (RR) paths. The structure of
these paths changes upon entering the Gulf Stream (390 nm)
and upon crossing the north wall (405 nm). The shoaling of
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the sound channel attributable to the presence of the front
is graphically depicted by the upward migration of these
paths. Figure 7 shows the ray paths associated with angles
40 . 120, These paths do not interact with the slope
and are totally waterborne. Again, there is a marked change

in the ray structure upon entering the Gulf Stream. This
family of rays also rises with the deep sound channel and
there is an evident narrowing of these paths corresponding
to the narrowing of the deep sound channel. Ray paths from
steeper angles are shown in }’gure 8. Angles from 179 to
24° are plotted, although this family includes angles
139 to 169 as well. These paths interact with the slope
once and become waterborne. Changes due to the Gulf Stream
crossing are not as apparent in these higher angle paths.
Some of these paths interact with the absorbing bottom
before crossing the north wall and lose their energy.
Acoustic ray paths from very steep angles are shown in
Figure 9. These paths interact with the slope twice and

then interact with the bottom further out in range. These
high angle paths experience many bottom interactions and do
not contribute significant energy to the problem.

In summary, acoustic ray paths determine what
families of rays contribute energy to the environment under
consideration. The bottom type of the slope in front of the
array is unknown. For purposes of illustration, it was
assumed to be a perfect reflector for the first 20 nm so
that the effects of the Gulf Stream on acoustic ray paths
could be determined. It was shown that the ray paths from
40 to 129 are totally waterborne. This ray family contri-
butes most of the energy to the prchlem and is modeled most
accurately.
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Transmission Loss Estimates ;

Acoustic propagation paths as determined by
geometric ray tracing techniques provide a physical justi-
fication of the distribution of energy. Transmission loss

estimates from three acoustic models are compared to meas-
ured transmission loss data. In this model evaluation, only
the waterborne energy is considered. This is accomplished
by adjusting the environmental input to each model. PE is
run with an absorbing bottom so that any energy incident on
the bottom is eliminated. Input to MPP is restricted to
only the waterborne paths, 40 -~ 120, GRASS is run with
a very high loss bottom which limits its effective angular

aperture to 49 - 129 also. Transmission loss estimates for
the bottom-mounted receiver and a 30 m/89 Hz source were

made, using each of these three models. These were compared
with measured transmission 1loss from the bottomed array.

Figure 10 shows transmission loss estimates from
the PE model. The significant loss of energy seen at
ranges 650 to 750 km results from the downward refracting
region of the Gulf Stream. The marked signal enhancement
occuring at 750 km corresponds to the rise and concurrent
narrowing of the deep sound channel across the North Wall of
the Gulf Stream. When this transmission loss estimate is
compared to measured transmission loss from the bottomed
array (Figure 11), it is seen that the levels of energy
compare quite well. The measured transmission loss shows
an additional family of paths, in the range interval from
650 to 750 km, that is not evident in the PE calculation.
The major difference between these curves occurs in the
region of the warm core of the Gulf Stream, where measured
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transmission loss levels are much higher than the PE cal-
culation. These differences are due to slope reflected
paths that are not considered in the PE calculation. These
paths account for the additional energy seen in the warm
core and for the structure differences found between the two

curves.

The measured data are compared with the trans-
mission loss predicted by the GRASS model in Figure 12.
The GRASS prediction shows about 6 dB less loss than
the measured acoustic data. In addition, this calcu-
lation does not show the signal enhancement resulting from
crossing the Gulf Stream. This indicates that this version
of the GRASS code is not sensitive to range dependence and
therefore should not be used in a predictive mode for
rapidly changing thermohaline features such as the Gulf
Stream.

The predicted transmission loss from the MPP
model is compared with the measured transmission 1loss in
Figure 13. It is seen that the levels agree quite well, yet
significant differences occur in the Gulf Stream. Once
again, these differences are accounted for by the presence
of slope reflected energy not included in the MPP calcula-
tion. It has been shown that the PE and MPP calcula-
tions agree quite well with the measured transmission loss.
An additional comparison between these two model predictions
(Figure 14) shows that they agree very well in level and
overall structure. The PE model shows much more detailed
structure because PE is a wave solution and MPP combines the
various ray paths incoherently.
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The results obtained in this comparative study
indicate that both MPP and PE agree well with the measured
transmission loss data. For the high frequencies of
interest for tactical sonar, it was decided to use the MPP
model for transmission loss estimates. This model has been

shown to be accurate at low frequencies. One additional
high frequency comparison is made between PE and MPP on the
second Gulf Stream data set. This comparison is discussed

in the next section.




Section 5
-TRANSMISSION LOSS ESTIMATES FOR TACTICAL SONAR SYSTEMS

Environmental Description

The environmental data along the second Gulf
Stream track (II), shown in Figure 3, were provided hy NUSC,
Newport. These data were collected by a NUSC-Woods Hole
Oceanographic Institute cruise conducted in December, 1976.
Thirty ship-dropped T-7 XBT's (750 m) were taken along a 180
km track. The sound velocity structure along the track was
generated by the ICAPS deep merge routine. Figure 15 shows
representative sound velocity profiles as well as the
bathymetry along the track. The track is similar to the
Gulf Stream tracks previously discussed. The track is
representative of winter conditions, which accounts for
differences found in the near surface layers. The presence
of a strong surface duct is evident in the Sargasso Sea
profiles. This duct is 140 m deep and extends for a dis-
tance of 85 km. The duct gradually becomes shallower and
disappears in the warm core. Once across the North Wall,
the surface duct reappears in the colder Slope Water. This
duct is not as deep as the one in the Sargasso, reaching
only a depth of 80 m and extending for 75 km.

Several source-receiver positions relative to
the Gulf Stream were considered. Source-receiver depths
of tactical importance (10 m, 140 m, and 300 m) were used.
The frequencies of interest were 50 Hz, 3 KHz, and 20
KHz. These span the range important to tactical sonar
systems. The cases considered are too numerous to discuss
each one in detail and are included in Appendix A.

5-1
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High Frequency Model vs. Model Comparison

The comparative model study suggested that the
PE model should be used for the low frequency (50 Hz) runs
and that MPP should be used for the high frequency (3 KHz,
20 KHz) cases. Measured transmission loss data were not
available so that a high frequency model vs. data comparison
could not be made. To compensate for this, one additional
test case was constructed for the December track. Transmis-
sion loss estimates for a 1 KHz run along the entire track
from the Sargasso to the Slope Water were obtained from both
the PE and MPP models. This frequency was chosen since it
approaches the upper 1limit of frequencies that PE can
handle. The estimates obtained from PE were considered
"true" and the MPP estimates were then compared to PE.

A test case was run for a 140 m receiver depth
and for three source depths of 10 m, 140 m, and 300 m.
Transmission loss estimates for the 10 m source are shown in
Figure 16. Significant differences between the curves
occur at 30 nm and from 45 - 65 nm. The PE calculation
shows much more energy than the MPP estimate. A super-
position of the ray trace and the PE energy contour (Figure
17) shows the distribution of energy as a function of range
and depth along the track. This figure shows the rays from
-50 to 59 (not including the 1© ray) plotted in a solid
line and the ducted paths, from 1/20 to 1° plotted in a
dashed 1line. The PE model energy contours clearly define
the presence of caustics-regions predicted by classical
ray-tracing to have infinite intensity. The MPP model
contains a caustic correction that approximates energy
associated with strong caustics. The benefits of this

5-3
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correction are apparent at the range from 32 - 40 nm.
The PE and MPP transmission loss estimates for a 10 m
source 140 m receiver (Figure 16) agree quite well even
though the ray trace (Figure 17) shows no energy at this
depth. At the range 30 nm., the energy found in the trans-
mission loss plot also results from the diffracted field
associated with the caustic centered around 36 nm. For a
source at 10 m, MPP predicts no energy for the region not
directly above the caustic. At range 45 -~ 65 nm, energy
shown in the PE calculation results from the diffracted
field associated with the ducted paths. This family
of paths, between 1/2° and 19, are trapped by the strong
surface duct in the Sargasso. This energy falls out of the
duct when the Gulf Stream is encountered at a range of
24 nm. This energy, associated with the convergence zone
centered at 36 nm, is reinsonified back into the duct past
the convergence 2zone, at ranges 45 - 65 nm. MPP does not
calculate this energy ior a 10 m source since this family of
rays represents a very weak caustic, and MPP only estimates
energy very close to strong caustics. As the source depth
increases, the differences between the PE and MPP calcu-
lations decrease since the source now couples into the
propagating ray paths. This can be seen in Figure 18 for a
140 m source. MPP shows increased levels of energy at the
ranges previously discussed. The differences between the
two curves continue to decrease, as evident in the transmis-
sion loss estimate for the 300 m source (Figure 19).

This comparison, while providing justification for
the accuracy of MPP at high frequencies, also demonstrates
the limitations of ray theory in cases where leakage from
a range dependent surface duct and reinsonification of a

5-6
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surface duct near a convergence zone oOCCuUTS. Another
limitation of ray theory occurs when only the source or
receiver (but not both) is in the duct. These cases
cannot be treated by ray theory for the frequencies of
interest since the field is dominated by leakage from
the duct.

Tactical Sonar Systems

MPP has been shown to be a valuable tool in
providing high-frequency transmission loss estimates.
The limitations of the model must be considered when using
it in a predictive mode. Acoustic propagation for several
sections of the track was determined. These paths included:
Sargasso to the Slope Water, Warm Core to the Sargasso,
-Warm Core to the Slope Water, the North Wall to the Sargasso
and the North Wall to the Slope Water. For each section of
the track, transmission loss estimates were obtained for
50 Hz, 3 KHz, and 20 KHz. Acoustic ray paths were deter-
mined for many source-receiver geometries. The low-fre-
quency transmission loss estimates were obtained from the PE
model, while high-frequency estimates were obtained from
MPP. These source-receiver geometries were determined by
NUSC to have tactical importance. Source-receiver com-
binations that involved cross duct propagation for high
frequencies were not considered.

Appendix A creates a data base of tactical
interest for acoustic propagation in the Gulf Stream
environment. Onlyr waterborne energy ls treated in the model
calculations, and any bottom effects that may occur in
this region are not considered.

5-9




Section 6
CONCLUSIONS

The Gulf Stream envircament is a region of strong
temperature variations. These result from seasonal heating
and cooling in the upper 200 m of the ocean. The tempera-
ture fluctuations directly affect the sound velocity struc-
ture and resulting acoustic propagation.

Long-range, low-frequency propagation through
the Gulf Stream can be efficiently modeled by the PE model.
For high frequencies of interest to tactical sonar systems,
the PE model is extremely limited. At these frequencies,
the diffracted field is less important and ray theory, which
is not frequency limited, provides an alternate means of
obtaining transmission loss estimates. Evaluation of two
ray models demonstrated that transmission loss estimates
obtained from MPP agreed well with measured transmission
loss for low frequency and with PE at a higher frequency.

The results of these comparative studies provided
justification for using MPP in a predictive mode for fre-
quencies of tactical importance. Transmission loss esti-
mates from MPP were obtained for many source-receiver
geometries in the Gulf Stream environment. In addition,
low-frequency transmission loss estimates from PE have been
included for these cases. These estimates, as well as
corresponding ray plots, have been assembled in Appendix A.
This appendix provides a readily available reference for

users involved with tactical sonar systems.

—




APPENDIX A




This Appendix contains transmission loss estimates
and ray plots for all the source-receiver geometries along
the December Gulf Stream track. The location of the
sections along the track and the source-receiver geometry
relative to the environment along the track are shown. For
the SLOPE/SARGASSO plots and the SARGASSO/SLOPE plots,
the receiver is located at range zero. For the runs origi-
nating in the WARM CORE or NORTH WALL, the receiver is
located at the beginning of the curve for the ray plots and
1 nm before this for the transmission loss plots.

RAY PLOTS
The rays drawn are spaced at 1° and are measured

from the horizontal. All rays begin at the receiver and
propagate outward (invoking the principle of acoustic

reciprocity). Most ray plots are for the 10 m and 140 m
receiver. The source depth used for all ray plots was
140 m. The range scale is equivalent to 6 nanm/unit. The

depth scale is equivalent to 600 m/unit.

TRANSMISSION LOSS

The range scale on all transmission loss plots

is 6 nm/unit. The 50 Hz transmission loss estimates are
obtained from the PE model. The 3,000 Hz and 20,000 Hz
estimates are obtailned from the MPP model. For all runs,

the fixed point (at zero range) is considered the receiver.
In the color plots, transmission loss plots for all three
source depths.
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